CMS data analysis tutorial: Documentation and
explanations

Jun.-Prof. Dr. Christian Sander, Dr. Alexander Schmidt

September 2014

1 Introduction

Prerequisites for this tutorial are a basic understanding of what the LHC and particle detectors are,
some knowledge about top quark physics and the ROOT data analysis framework. You can follow the
exercise sheet step by step which guides you to the discovery of the top quark, the measurement of
the top quark production cross-section and the top quark mass.

A physics analysis of a collider experiment has several general components. The final state decay
products of the studied channel are measured by the detector, so we need to develop techniques to
assign the final state objects to the hypothetical signal decay cascade. For our tutorial we will restrict
to semi-leptonic decay cascades of pair-produced top quarks. This is illustrated in Figure 1 which
shows such a semi-leptonic ¢t decay tree. One W boson decays to two quarks (measured as ”jets” in
the detector), and the other one decays to a lepton (muon, electron, tau) and a neutrino. In addition,
two b-quarks emerge from the top decay.

l+
b v
N\, W+
- 2\
W- ¢ t t
g/ b

Figure 1: Feynman diagram of a semi-leptonic ¢t decay. The final state consists
of two quarks (jets), two b-quarks (b-jets), one charged lepton and one neutrino.

The task of reconstructing the decay tree is further complicated by the presence of additional ob-
jects, such as jets from radiation or from simultaneous proton-proton collisions (pileup). Furthermore,
there are plenty of other physics processes which have similar final states as t¢ production, for instance
QCD multi-jet production or electroweak W+jets production. These processes are called backgrounds.
Suppression of these backgrounds is a very important component of each physics analysis. We have to
study kinematical properties of the events, such as number of jets, the jet momentum and b-tagging
discriminators and others. Cuts on these variables can be determined and optimized with the help of
Monte Carlo simulation.

Finally, to estimate a cross-section, we need to understand what fraction of signal events are ac-
tually selected by our analysis (so called efficiency). This efficiency includes the trigger, the detector
acceptance, detector reconstruction efficiency and selection cuts on analysis level. There are sophis-
ticated methods to measure these efficiencies precisely in a data-driven way. For the purpose of our
tutorial, we can take these efficiencies from the simulation.

2 Data samples and Monte Carlo simulation

Due to the extremely high LHC collision rate of up to 20 MHz not all events can be stored. A trigger
system selects the ”interesting” events and reduces the total event rate to a few hundred Hertz. The
trigger which has been used for this analysis selects events containing isolated single muons with a
transverse momentum threshold of pr > 24 GeV. The sample with real CMS data collected with this
trigger has 469384 events and corresponds to an integrated luminosity of 50 pb~!. Details are given
in Table 1.

This table also contains information about the simulated samples. The number of simulated events
can be much smaller or much larger than required for an integrated luminosity of 50 pb~!, so these
have to be weighted accordingly. The weight is stored in the EventWeight variable in each sample
(more details on the variables are given in Section 3). The corresponding integrated luminosity for
each MC sample, taking into account the EventWeight is indicated in the fifth column in Table 1 (all
events have to be multiplied with their event weight to correspond to the given luminosity).

The last column of Table 1 indicates whether the sample contains also events which did not pass
the trigger selection. Naturally, real data contains triggered events only. For simulation, only the tf
sample also contains non-triggered events so that we can estimate the trigger efficiency for tf events.

filename type #events | x-section | int. lumi. | trig. only
data.root data 469384 50 pb—! yes
ttbar.root sim. tt signal 36941 165 pb 50 pb~! no
wjets.root sim. W plus jets background | 109737 | 31300 pb | 50 pb~! yes
dy.root sim. Drell-Yan background 77729 | 15800 pb | 50 pb~! yes
WW.root sim. WW background 4580 43 pb 50 pb~! yes
Wz .root sim. WZ background 3367 18 pb 50 pb~! yes
ZZ.T0o0t sim. ZZ background 2421 6 pb 50 pb~? yes
single_top.root | sim. single top background 5684 85 pb 50 pb~! yes
gcd.root sim. QCD multijet backgr. 142 10% pb 50 pb~! yes

Table 1: Data and simulated Monte Carlo samples.

As you see, the QCD sample contains very few triggered events, even though its production cross-
section is very large. This is due to the isolated lepton requirement which strongly reduces this
background already at the trigger level.

The files are contained in the package HEPTutorial.tar.gz in the subdirectory files.

3 Data format and structure of the ROOT tree

The data samples for this tutorial are stored in ROOT trees. The tree contains a collection of variables
(called branches) which are filled once per event. The list of variables along with their data type and
further explanations are given in the following. Variables with brackets [] indicate that they are
stored as arrays:

e NJet (integer): number of jets in the event.

e Jet_Px[NJet] (float): x-component of jet momentum. This is an array of size NJet, where a
maximum of twenty jets are stored (NJet < 21). If there are more than twenty jets in the event,
only the twenty most energetic are stored. Only jets with pp > 30 GeV are stored.

e Jet_Py[NJet] (float): y-component of jet momentum, otherwise same as Jet_Px[NJet].
e Jet_Pz[NJet] (float): z-component of jet momentum, otherwise same as Jet_Px[NJet].

e Jet_E[NJet] (float): energy of the jet, otherwise same as Jet_Px[NJet]. Note that the four
compoments Jet_Px, Jet_Py, Jet_Pz and Jet_E constitute a fourvector which fully describes
the kinematics of a jet.

Jet_btag[NJet] (float): b-tagging discriminator. This quantity is obtained from an algorithm
that identifies B-hadron decays within a jet. It is correlated with the lifetime of the B-hadron.
Higher values indicate a higher probability that the jet originates from a b-quark. Important:
The discriminator has small performance differences in data and simulation. To account for this,
simulated events have to be reweighted by a factor of ~ 0.9 per required b-tagged quark.

Jet_ID[NJet] (bool): Jet quality identifier to distiguish between real jets (induced by hadronic
interactions) and detector noise. A good jet has true as value.

NMuon (integer): number of muons in the event.

Muon_Px [NMuon] (float): x-component of muon momentum. This is an array of size NMuon,
where a maximum of five muons are stored (NMuon < 5). If there are more than five muons in
the event, only the five most energetic are stored.

Muon_Py [NMuon] (float): y-component of muon momentum, otherwise same as Muon_Px [NMuon].
Muon_Pz [NMuon] (float): z-component of muon momentum, otherwise same as Muon_Px [NMuon].

Muon_E[NMuon] (float): energy of the muon, otherwise same as Muon_Px [NMuon]. Note that the
four compoments Muon_Px, Muon_Py, Muon_Pz and Muon_E constitute a fourvector which fully
describes the kinematics of a muon.

Muon_Charge [NMuon] (integer): charge of the muon. It is determined from the curvature in the
magnetic field and has values +1 or -1.

Muon_Iso [NMuon] (float): muon isolation. This variable is a measure for the amount of detector
activity around that muon. Muons within jets are accompanied by close-by tracks and deposits
in the calorimeters, leading to a large values of Muon_Iso. On the other hand, muons from W
bosons are isolated and have small values of Muon_Iso.

NElectron (integer): same as for muons above, but for electrons.
Electron_Px[NElectron] (float): same as for muons above, but for electrons.
Electron_Py[NElectron] (float): same as for muons above, but for electrons.
Electron_Pz[NElectron] (float): same as for muons above, but for electrons.
Electron_E[NElectron] (float): same as for muons above, but for electrons.
Electron_Charge [NElectron] (integer): same as for muons above, but for electrons.
Electron_Iso[NElectron] (float): same as for muons above, but for electrons.
NPhoton (integer): same as for muons above, but for photons.
Phtoton_Px[NPhoton] (float): same as for muons above, but for photons.
Photon_Py[NPhoton] (float): same as for muons above, but for photons.
Photon_Pz[NPhoton] (float): same as for muons above, but for photons.
Photon_E[NPhoton] (float): same as for muons above, but for photons.
Photon_Iso[NPhoton] (float): same as for muons above, but for photons.

MET_px (float): x-component of the missing energy. Due to the hermetic coverage of the LHC
detectors and the negligible transverse boost of the initial state, the transverse momentum
sum of all detector objects (jets, muons, etc...) must be zero. This is required by energy and
momentum conservation. Objects which escape the detector, such as neutrinos, are causing a
”missing” transverse energy which can be measured and associated to the neutrino.

e MET_py (float): y-component of the missing energy.

e NPrimaryVertices (integer): the number of proton-proton interaction vertices. Due to the high
LHC luminosity several protons within one bunch crossing can collide. This is usually referred
to as "pileup”. The spread of these vertices is several centimeters in longitudinal direction and
only micrometers in the transverse direction.

e triggerIsoMu24 (bool): the trigger bit. It is ”true” if the event is triggerd and "false” if the
event is not triggered (data can only contain triggered events).

All quantities discussed above are actually measured by the detector. They are available both in
Monte Carlo simulation and real data. The following variables are ONLY available for the ¢t signal
Monte Carlo samples (described in Section 2), because they refer to the true ¢t decay cascade on
generator level. This information can be used to study methods how to associate the simulated final
state detector objects to the tt decay cascade which can eventually be applied also to real data. Please
note that these variables are only filled for semi-leptonic tt decays. They are set to zero for fully
hadronic and fully leptonic decays. They are also zero in the background Monte Carlo samples.

e MChadronicBottom_px (float): x-compoment of the b-quark from the top decay belonging to
the hadronic branch.

e MChadronicBottom_py (float): y-compoment ...
e MChadronicBottom_pz (float): z-compoment ...

e MChadronicWDecayQuark_px (float): x-component of the quark from the hadronic W boson
decay

e MChadronicWDecayQuark_py (float): y-component ...
e MChadronicWDecayQuark_pz (float): z-component ...

e MChadronicWDecayQuarkBar_px (float): x-component of the anti-quark from the hadronic W
boson decay

e MChadronicWDecayQuarkBar_py (float): y-component ...
e MChadronicWDecayQuarkBar_pz (float): z-component ...

e MCleptonicBottom_px (float): x-compoment of the b-quark from the top decay belonging to
the leptonic branch.

e MCleptonicBottom_py (float): y-compoment ...
e MCleptonicBottom_pz (float): z-compoment ...

e MClepton_px (float): x-component of the lepton (electron, muon, tau) from the leptonic W
boson decay.

e MClepton_py (float): y-component ...
e MClepton_pz (float): z-component ...

e MCleptonPDGid (integer): particle “ID” of the lepton. Possible values are 11 for electrons, 13
for muons, 15 for taus. Negative numbers indicate anti-particles.

e MCneutrino_px (float): x-component of the neutrino from the leptonic W boson decay.
e MCneutrino_py (float): y-component ...
e MCneutrino_pz (float): z-component ...

e EventWeight (float): weight factor to be applied to simulated events due to different sample
sizes.

4 Analysis framework

The package HEPTutorial.tar.gz contains an example framework to help you getting started. Un-
pack the example with tar xvzf HEPTutorial.tar.gz. You can build your additional analysis code
on top of this example. The example is already running, but it’s not doing much yet. You can compile
the analysis code by first initializing a ROOT environment followed by executing the command make.

This will read the necessary ingredients for compilation from the Makefile in the same directory.
You don’t need to understand the Makefile at this stage. The important point is that it creates an
executable named example.x. You can then simply execute the program by the command example.x.

A description of the individual components of the example are given in the following list. Indicated
are also the places where you should start adding your own code:

e cxample.C: this is the first starting point. It contains the main() function which is necessary for
any C++ program. The first step is to create instances of MyAnalysis which is implemented in
the files MyAnalysis.h and MyAnalysis.C (explained in the next item). The TChain represents
the ROOT tree discussed in Section 3. The files which should be read from disk are specified in
the function Add(filename). The tree is then read and processed by the Process() function
which takes a MyAnalyis as argument. The real work is then done in the Process() function
of the MyAnalysis class which is discussed in the next two items. You should instantiate a
separate MyAnalysis class for each data or MC sample that you want to process. The end of
the main() function shows how to access and write out the histograms which are filled inside
the MyAnalysis class.

e MyAnalysis.h: definition of the class MyAnalysis, which inherits from a ROOT TSelector (see
the ROOT reference manual for details about TSelector). The constructor takes a global scaling
factor (by default ”1.0”) which is applied to all events in the given sample (multiplied to the indi-
vidual event weights). This global scaling factor can be used to normalize the MC cross-sections.
MyAnalysis contains the declaration of all variables (such as Jet_Px) which are contained in
the ROOT tree (see section 3). It also declares variables and functions that will be used in your
analysis, such as histogram pointers (type TH1F*). Some containers of type vector<...> are
also declared here. These containers will hold the helper classes representing jets (MyJet) or
muons (MyMuon). Finally, the MyAnalysis::Init () function makes the connection between the
ROOT tree (stored on disk) and the variables which are kept in memory.

e MyAnalysis.C: the two main functions which are called automatically while processing the
ROQOT trees are SlaveBegin() and Process(). The SlaveBegin() function is called only
once per job, just before the processing of the events start. You see that it is used for book-
ing histograms (assigning the histograms to the pointers defined in the MyAnalysis.h file). The
Process () function is called automatically for every single event. This is the place where the core
of the analysis happens. In the existing example Process() calls a subroutine BuildEvent ()
which takes care of filling some of the kinematic variables into convenient representations as
MyJet or MyMuon, which are essentially fourvectors (explained in the next item). After building
the event, a very simple example analysis is performed in Process() which fills the transverse
momentum p; of a muon into a histogram.

e MyMuon.h/MyMuon.C: inherits from TLorentzVector which is basically a fourvector (see the
ROOT reference guide for details about TLorentzVector. It adds additional information about
the muon charge and muon isolation variables to the fourvector.

e MyElectron.h/MyElectron.C: same as MyMuon but for electrons.

e MyJet.h/MyJet.C: inherits from TLorentzVector, adds additional information about the b-
tagging variable to the fourvector. The b-tagging variable is correlated to the probability that
the jet originates from a b-quark. Large values of this variable means high probability for a
b-quark jet. The function IsBTagged() applies a cut to the b-tag discriminator and returns
a boolean decision (true or false). The function GetJetID() returns true if a jet fulfills basic
quality criteria, else it returns false.

e Plotter.h/Plotter.C: A tool which can be used for automatic plotting of a set of histograms
which are stored in a std::vector. Please see example.C on how to use it.

The program writes an output file , e.g. results.pdf, which contains the plots from the analysis.
You can open the file with any pdf viewer, for example acroread.

